A Class of Block Smoothers for Multigrid Solution of Saddle Point Problems with Application to Fluid Flow

نویسنده

  • Piotr Krzyzanowski
چکیده

We design and analyse an iterative method, which uses a specific block smoother for the multigrid cycle. Among many possibilities we choose a few multigrid iterations as the smoother’s blocks. The result is a multilevel procedure that works for regular saddle point problems and features all good properties of the classical multigrid for elliptic problems, such as the optimal complexity and convergence rate independent of the number of levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigrid methods for saddle point problems: Stokes and Lamé systems

We develop new multigrid methods for a class of saddle point problems that include the Stokes system in fluid flow and the Lamé system in linear elasticity as special cases. The new smoothers in the multigrid methods involve optimal preconditioners for the discrete Laplace operator. We prove uniform convergence of the W -cycle algorithm in the energy norm and present numerical results for W -cy...

متن کامل

Smoothers in Coupled Multigrid Methods for the Parallel Solution of the Incompressible Navier{stokes Equations

Coupled multigrid methods have been proven as eecient solvers for the incompressible Navier{ Stokes equations in recent benchmark computations ST96a]. This paper presents a numerical study of two classes of smoothers in these methods. The class of Vanka{type smoothers is characterized by the solution of small local linear systems of equations in a Gauss{Seidel manner in each smoothing step wher...

متن کامل

Convergence analysis of multigrid methods with collective point smoothers for optimal control problems

In this paper we consider multigrid methods for solving saddle point problems. The choice of an appropriate smoothing strategy is a key issue in this case. Here we focus on the widely used class of collective point smoothers. These methods are constructed by a point-wise grouping of the unknowns leading to, e.g., collective Richardson, Jacobi or Gauss-Seidel relaxation methods. Their smoothing ...

متن کامل

Generalized iterative methods for solving double saddle point problem

In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version  of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...

متن کامل

Patch Smoothers for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems

We consider a multigrid method for solving the discretized optimality system of a PDE-constrained optimization problem. In particular, we discuss the construction of an additive Schwarz-type smoother for a class of elliptic optimal control problems. A rigorous multigrid convergence analysis yields level-independent convergence rates. Numerical experiments indicate that the convergence rates are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003